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ON IDEAL CONVERGENCE OF DOUBLE SEQUENCES IN THE

TOPOLOGY INDUCED BY A FUZZY 2-NORM
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Abstract. In this paper we introduce and investigate I2-convergence, I∗
2 -convergence, I2-limit

points, and I2-cluster points of a double sequence in a fuzzy 2-normed linear space. We prove

a decomposition theorem for I2-convergence of double sequences. The notions of I2-double

Cauchy and I∗
2 -double Cauchy sequence are defined, and some of their properties are studied.
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1. Introduction

In 1965, Zadeh [41] introduced the notion of fuzzy sets and since then fuzzy set theory found

very useful applications in various fields of mathematics and many other sciences. In particular,

a number of papers deals with fuzzy real numbers introduced in [8]. In this paper we are

interested in ideal convergence of double sequences in fuzzy 2-normed linear spaces.

The concept of 2-normed spaces was introduced by Gähler [20] in the 1960’s, and then this

concept has been studied by many authors [7, 11, 12]; for more information see [37].

The idea of fuzzy norm was initiated by Katsaras [27], and Matloka [32] introduced conver-

gence of sequences of fuzzy numbers. After that a big number of works dealing with fuzzy norms

and fuzzy numbers, in particular with convergence of sequences of fuzzy numbers, appeared in

the literature (see, for example, [15, 21, 22, 31, 35, 38]). By using fuzzy numbers Felbin [18]

defined a fuzzy norm on a linear space whose associated fuzzy metric is of Kaleva and Seikkala

type [24]. Cheng and Mordeson [9], and also Bag and Samanta [4] introduced a fuzzy norm on a

linear space whose associated fuzzy metric is of Kramosil and Michalek type [30]. In [5], a com-

parative study of the fuzzy norms defined by Katsaras [30], Felbin [18], and Bag and Samanta

[4] was given.

Using the concept of ideal, Kostyrko et al. [28] introduced the notion of ideal convergence

which is a common generalization of ordinary convergence and statistical convergence [17, 19,

29, 40, 14] and provides a general framework for study of various kinds of convergence. Ideal

and statistical convergence were studied in the fuzzy set theory context from different points of

view (see [1, 2, 3, 6, 16, 23, 25, 26, 33, 36, 39]).

This paper is organized as follows: In the second section, we present some preliminary def-

initions and results related to fuzzy numbers, fuzzy normed spaces and ideal convergence. In

the third section, we introduce the notions of IE
2 -convergence and I∗E2 -convergence of double

sequences in a fuzzy 2-normed space E and prove some basic results in this connection. We
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also study the concepts of IE
2 -limit points and IE

2 -cluster points of double sequences in fuzzy 2-

normed spaces. In fourth section, we introduce the notions of IE
2 -double Cauchy and I∗E2 -double

Cauchy sequences in a fuzzy 2-normed space.

Throughout the paper N and R denote the set of natural numbers and real numbers, respec-

tively. J denotes the closed unit interval [0, 1] ⊂ R, and I2 is an ideal on N× N.

2. Definitions and preliminaries

In this section we recall some basic definitions and notions related to 2-normed spaces, fuzzy

numbers, fuzzy normed and fuzzy 2-normed spaces, and ideal convergence.

Definition 2.1. ([20]) Let X be a real vector space of dimension d, 2 ≤ d < ∞. A 2-norm on

X is a function ∥., .∥ : X ×X → R which satisfies:

(i) ∥x, y∥ = 0 if and only if x and y are linearly dependent;

(ii) ∥x, y∥ = ∥y, x∥ for all x, y ∈ X;

(iii) ∥cx, y∥ = |c|∥x, y∥ for all x, y ∈ X and c ∈ R ;

(iv) ∥x+ y, z∥ ≤ ∥x, z∥+ ∥y, z∥ for all x, y, z ∈ X.

The pair (X, ∥., .∥) is called a 2-normed space.

Definition 2.2. ([8], [18], [24]) A fuzzy real number, or simply fuzzy number, is a fuzzy set

X : R → [0, 1] having the following properties:

(a) X is normal (i.e. there exists a t0 ∈ R such that X(t0) = 1);

(b) X is fuzzy convex (i.e. for r, s ∈ R and λ ∈ J = [0, 1], X(λr+(1−λ)s) ≥ min{X(r), X(s)});
(c) X is upper semi-continuous (i.e. X←([0, t + ε)) is open in R for each t ∈ J and each

ε > 0);

(d) The closure of the set [X]0 := {t ∈ R : X(t) > 0} is compact.

Let F(R) be the set of all fuzzy real numbers. For X ∈ F(R), the α-level set of X [18] is

defined as:

[X]α =

{
{t ∈ R : X(t) ≥ α}, if 0 < α ≤ 1;

Cl({t ∈ R : X(t) > 0}), if α = 0.

A real number x can be considered as a fuzzy number x defined by

x(t) =

{
1, if t = x;

0, if t ̸= x,

i.e., R can be embedded in F(R).
It is easy to show that X is a fuzzy number if and only if [X]α is a nonempty bounded and

closed interval for each α ∈ [0, 1]. We denote this interval [X]α = [X−α , X+
α ] (see [21]).

Remark 2.3. The above definition of fuzzy numbers slightly differs from that of [18], where

X−α = −∞ and X+
α = +∞ are also admissible, and the zero-level set is not considered.

A fuzzy number X is called a non-negative fuzzy number if X(t) = 0 for t < 0. Let F∗(R) be
the set of all non-negative fuzzy numbers. Clearly, X ∈ F∗(R) if and only if X−α ≥ 0 for each

α ∈ J , and 0 ∈ F∗(R).
A partial order ≼ on F(R) is defined by X ≼ Y if and only if X−α ≤ Y −α and X+

α ≤ Y +
α , for

all α ∈ J . The strict inequality ≺ on F(R) is defined by X ≺ Y if and only if X−α < Y −α and

X+
α < Y +

α , for all α ∈ J .

Let X,Y ∈ F(R), define

d(X,Y ) = sup
α∈[0,1]

max{|X−α − Y −α |, |X+
α − Y +

α |}.
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Then d is called the supremum metric on F(R). It is known that (F(R), d) is a complete

metric space (for details see [24]).

Let (Xk) be a sequence in F(R) andX0 ∈ F(R). We say that (Xk) converges to X0 with respect

to the metric d if lim
k→∞

d(Xk, X0) = 0. In this case we write Xk
d−→ X0 or d− limk→∞Xk = X0,

Now we define the notion of fuzzy 2-normed space.

Let E be a real vector space with the zero element θ, let ∥., .∥ : E × E → F(R), and let

the mappings L,R : [0, 1]× [0, 1] → [0, 1] be symmetric, non-decreasing in both arguments and

satisfy L(0, 0) = 0 and R(1, 1) = 1.

Definition 2.4. The quadruple (E, ∥., .∥, L,R) is called a fuzzy 2-normed space and ∥., .∥ a

fuzzy 2-norm, if the following axioms are satisfied:

(2FN1) ∥X,Y ∥ = 0 if and only if X and Y are linearly dependent;

(2FN2) ∥λX, Y ∥ = |λ|∥X,Y ∥, λ ∈ R;
(2FN3) For all X,Y, Z ∈ E,

(i) ∥X + Y,Z∥(r + s) ≥ L(∥X,Z∥(r), ∥Y, Z∥(s)), whenever r ≤ ∥X,Z∥−1 , s ≤ ∥Y,Z∥−1
and r + s ≤ ∥X + Y, Z∥−1 ,

(ii) ∥X + Y,Z∥(r + s) ≥ R(∥X,Z∥(r), ∥Y,Z∥(s)), whenever r ≥ ∥X,Z∥−1 , s ≥ ∥Y,Z∥−1
and r + s ≥ ∥X + Y, Z∥−1

In the sequel we take L(p, q) = min{p, q} and R(p, q) = max{p, q}, for all p, q ∈ [0, 1] and

write (E, ∥., .∥) or simply E, for such L and R.

Remark 2.5. If L = min, then the triangle inequality (2FN3)(i) in Definition 2.4 is equivalent

to the triangle inequality ∥X + Y,Z∥−α ≤ ∥X,Z∥−α + ∥Y, Z∥−α , for all X,Y, Z ∈ E and α ∈ [0, 1],

while the inequality (2FN3)(ii), with R = max, is equivalent to ∥X + Y, Z∥+α ≤ ∥X,Z∥+α +

∥Y, Z∥+α , for all α ∈ [0, 1] and X,Y, Z ∈ E.

In fact we have the following result.

Lemma 2.6. For L = min and R = max, we have that for each α ∈ [0, 1], ∥X,Z∥−α and

∥X,Z∥+α are norms on E in the usual sense.

The following example is similar to [21, Example 2.1] concerning fuzzy normed linear spaces.

Example 2.1. Let (E, ∥·, ·∥u) be an ordinary 2-normed linear space. Then a fuzzy 2-norm on

E can be obtained as

1. ∥X,Y ∥ = 0 if X and Y are linearly dependent;

2.

∥X,Y ∥(t) =


0, if 0 ≤ t ≤ a∥X,Y ∥u or t ≥ b∥X,Y ∥u;

t
(1−a)∥X,Y ∥u

− a
1−a , if a∥X,Y ∥u ≤ t ≤ ∥X,Y ∥;

1
(1−b)∥X,Y ∥u

− b
1−b , if ∥X,Y ∥u ≤ t ≤ b∥X,Y ∥u.

if X and Y are linearly independent and 0 < a < 1, 1 < b < ∞;

Hence (E, ∥., .∥) is a fuzzy 2-normed space. The fuzzy 2-norm considered above is called a

triangular fuzzy 2-norm.

For X ∈ E, ε > 0 and α ∈ [0, 1], the (ε, α)-neighborhood of X is the set

UX(ε, α) = {Y ∈ E : ∥X − Y, Z∥+α < ε, for all Z ∈ E}.

The (ε, α)-neighborhood system at X is the collection

UX = {UX(ε, α) : ε > 0, α ∈ [0, 1]},
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and the (ε, α)-neighborhood system for E is the union U =
∪

X∈E UX . It is easy to see that U

generates a first countable Hausdorff topology on E.

Definition 2.7. Let (E, ∥., .∥) be a fuzzy 2-norm space. A sequence {Xk} in E is said to be

convergent to X0 ∈ E with respect to the norm on E, and we denote this by Xk → X0, provided

d − limk→∞ ∥Xk −X0, Z∥ = 0 for all Z ∈ E, i.e., for every ε > 0 there exists an integer

k0 = k0(ε) in N such that d(∥Xk −X0, Z∥, 0) < ε, for k ≥ k0.

This is the same as to say that for every ε > 0 there exists an integer k0(ε) in N such that

sup
α∈[0,1]

∥Xk −X0, Z∥+α = ∥Xk −X0, Z∥+0 < ε, for k ≥ k0.

In terms of neighborhoods, we have Xk → X0, provided that for every ε > 0 there exists an

integer k0(ε) in N such that Xk ∈ UX0(ε, 0) for all k ≥ k0 and all Z ∈ E.

Finally, we give some basic facts about classic notions ideals and filters.

Let Y ̸= ∅. Then:
1. A family I of subsets of Y is said to be an ideal in Y provided the following conditions

hold: (i) if A,B ∈ I, then A∪B ∈ I, and (ii) A ∈ I and B ⊂ A imply B ∈ I. If Y /∈ I, then I
is called a proper ideal.

2. A non-empty family F of subsets of Y is said to be a filter on Y if (i) ∅ /∈ F ,(ii) if A,B ∈ F ,

then A ∩B ∈ F , and (iii) A ∈ F and A ⊂ B ⊂ Y imply B ∈ F .

A proper ideal I is said to be admissible if {x} ∈ I for each x ∈ Y . An admissible ideal I on

N is said to have the property (AP) [28] if for any sequence {A1, A2, · · · } of pairwise disjoint sets

of I, there is a sequence {B1, B2, · · · } of sets such each symmetric difference Ai∆Bi(i = 1, 2, · · · )

is finite and

∞∪
i=1

Bi ∈ I.

If I is a proper ideal on Y , then the family

F(I) = {M ⊂ Y : ∃A ∈ I : M = Y \A}

is a filter in Y . It is called the filter associated with the ideal I.
In what follows the symbol I2 denotes an ideal on N×N , and (E, ∥., .∥) is a fuzzy 2-normed

space.

3. Ideal convergence in fuzzy 2-normed linear spaces

In this section we introduce the notions of IE
2 -convergence and I∗E2 -convergence of a double

sequence in a fuzzy 2-normed space (E, ∥., .∥ and present some basic results on this convergence.

We also introduce the notions of I2-limit point and I2-cluster point of a double sequence in

(E, ∥., .∥.
We begin with the following definition.

Definition 3.1. A double sequence {Xjk} in a fuzzy 2-normed space (E, ∥., .∥) is said to be

E-convergent to X0 if for every ε > 0 and each Z ∈ E there exists a positive integer n0 = n0(ε)

such that

Xjk, Z ∈ UX0(ε, 0) for each j, k ≥ n0.

In this case we write E-lim ∥Xjk −X0, Z∥+0 = 0.

Definition 3.2. Let (E, ∥., .∥) be a fuzzy 2-normed space and I2 an ideal on N × N. A double

sequence {Xjk} in E is said to be IE
2 -convergent to X0 ∈ E with respect to the fuzzy 2-norm

on E if for each ε > 0 and each Z ∈ E, the set A(ε) := {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ ε}
belongs to I2.
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In this case, we write Xjk
IE2−−→ X0. The element X0 is called the IE

2 -limit of {Xjk} in E.

Remark 3.3. (a) In terms of neighborhoods, we have Xjk
IE2−−→ X0, provided that for each ε > 0

and Z ∈ E,

{(j, k) ∈ N× N : Xjk, Z /∈ UX0(ε, 0)} ∈ I2.
The above definition can be expressed also in the following way:

Xjk
IE2−−→ X0 ⇐⇒ IE

2 − lim
j,k→∞

∥Xjk −X0, Z∥+0 = 0, for all Z ∈ E.

(b) Note that IE
2 − limj,k→∞ ∥Xjk −X0, Z∥+0 = 0, for all Z ∈ E implies

IE
2 − lim ∥Xjk −X0, Z∥−α = IE

2 − lim ∥Xjk −X0, Z∥+α
for each α ∈ [0, 1] and each Z ∈ E.

(It is because 0 ≤ ∥Xjk −X0, Z∥−α ≤ lim ∥Xjk −X0, Z∥+α ≤ ∥Xjk −X0, Z∥+0 , holds for each

(j, k) ∈ N× N, α ∈ [0, 1] and each Z ∈ E.)

Example 3.1. (1) If we take I2 = Ifin = {A ⊂ N × N : A is finite}, then Ifin is a non-trivial

admissible ideal of N×N, and the corresponding convergence coincides with ordinary convergence

with respect to the fuzzy 2-norm on E (Definition 3.1).

(2) If we take I2 = Iδ2 = {A ⊂ N× N : δ2(A) = 0}, then Iδ2 is a non-trivial admissible ideal

of N×N, and the corresponding convergence coincides with statistical convergence with respect

to the fuzzy 2-norm on E.

Proposition 3.4. Let (E, ∥., .∥) be a fuzzy 2-normed space. If a double sequence {Xjk} is

IE
2 -convergent with respect to the norm on E, then IE

2 -limit is unique.

Proof. Let us assume that Xjk
IE2−−→ X0 and Xjk

IE2−−→ Y0, where X0 ̸= Y0. Since X0 ̸= Y0, select

ε > 0 so that UX0(ε, 0) and UY0(ε, 0) are disjoint neighborhoods of X0 and Y0. Since X0 and Y0
both are IE

2 -limit of the sequence {Xjk}, we have that for each Z ∈ E the sets

A = {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ ε}

and

B = {(j, k) ∈ N× N : ∥Xjk − Y0, Z∥+0 ≥ ε}
both belong to I2. This implies that the sets

Ac = {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 < ε}

and

Bc = {(j, k) ∈ N× N : ∥Xjk − Y0, Z∥+0 < ε}
belong to F(I2). In this way we obtain a contradiction to the fact that the neighborhoods

UX0(ε, 0) and UY0(ε, 0) of X0 and Y0 are disjoint. Hence we have X0 = Y0. �

Proposition 3.5. Let (E, ∥., .∥) be a fuzzy 2-normed space. Then we have

(1) If E-lim ∥Xjk −X0, Z∥+0 = 0, then IE
2 -lim ∥Xjk −X0, Z∥+0 = 0;

(2) If Xjk
IE2−−→ X0 and Yjk

IE2−−→ Y0, then Xjk + Yjk
IE2−−→ X0 + Y0;

(3) If Xjk
IE2−−→ X0 and c ∈ R, then cXjk

IE2−−→ cX0;

(4) If Xjk
IE2−−→ X0 and Yjk

IE2−−→ Y0, then Xjk · Yjk
IE2−−→ X0 · Y0;
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(5) If Xjk ≼ Yjk ≼ Zjk for all (j, k) ∈ N×N belonging to the set B ∈ F(I2), and Xjk
IE2−−→ X0

and Zjk
IE2−−→ X0, then Yjk

IE2−−→ X0.

Proof. (1) Suppose that E-lim ∥Xjk −X0, Z∥+0 = 0. Let ε > 0 and Z ∈ E any nonzero element.

Then there exists a positive integer n such that ∥Xjk −X0, Z∥+0 < ε for each j, k ≥ n. Since

A = {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ ε} ⊆ {1, 2, · · · , n− 1} × {1, 2, · · · , n− 1}

and the ideal I2 is admissible, we have A ∈ I2. This shows that IE
2 -lim ∥Xjk −X0, Z∥+0 = 0.

(2) Suppose that Xjk
IE2−−→ X0 and Yjk

IE2−−→ Y0. Since ∥., .∥+0 is a 2-norm in the usual sense, we

get

∥(Xjk + Yjk)− (X0 + Y0), Z∥+0 ≤ ∥Xjk −X0, Z∥+0 + ∥Yjk − Y0, Z∥+0 (1)

for all (j, k) ∈ N× N. Put
A(ε) = {(j, k) ∈ N× N : ∥(Xjk + Yjk)− (X0 + Y0), Z∥+0 ≥ ε},
A1(

ε
2) = {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ ε

2},
A2(

ε
2) = {(j, k) ∈ N× N : ∥Yjk − Y0, Z∥+0 ≥ ε

2}.
By assumption, we have that A1(

ε
2) and A2(

ε
2) belong to I2, and so A1(

ε
2) ∪ A2(

ε
2) ∈ I2. From

(1) it follows that A(ε) ⊆ A1(
ε
2) ∪A2(

ε
2). This implies that A(ε) ∈ I2. This proves (2).

(3) Since Xjk
IE2−−→ X0, we have

A(1) = {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 < 1} ∈ F(I2).

Now ∥., .∥+0 is a 2-norm in the usual sense, so that

∥XjkYjk −X0Y0, Z∥+0 ≤ ∥Xjk, Z∥+0 ∥Yjk − Y0, Z∥+0 + ∥Y0, Z∥+0 ∥Xjk −X0, Z∥+0 .

For (j, k) ∈ A(1), we have ∥Xjk, Z∥+0 ≤ ∥X0, Z∥+0 + 1 and it follows that

∥XjkYjk −X0Y0, Z∥+0 ≤ (∥X0, Z∥+0 + 1)∥Yjk − Y0, Z∥+0 + ∥Y0, Z∥+0 ∥Xjk −X0, Z∥+0 . (2)

Let ε > 0 be given. Choose λ > 0 such that

0 < 2λ <
ε

∥Y0, Z∥+0 + ∥X0, Z∥+0 + 1
(3)

Since Xjk
IE2−−→ X0 and Yjk

IE2−−→ Y0 , the sets

A1(λ) = {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 < λ}

and

A2(λ) = {(j, k) ∈ N× N : ∥Yjk − Y0, Z∥+0 < λ}
belong to F(I2).

Obviously, A(1)∩A1(λ)∩A2(λ) ∈ F(I2) and for each (j, k) ∈ A(1)∩A1(λ)∩A2(λ), we have

from (2) and (3),

∥XjkYjk −X0Y0∥+0 < ε.

This implies that {(j, k) ∈ N× N : ∥Xjk · Yjk −X0 · Y0∥+0 ≥ ε} ∈ I2, i.e., Xjk · Yjk
IE2−−→ X0 · Y0.

(4) Let c ∈ R. If c = 0, we have nothing to prove, so we assume that c ̸= 0. Let ε > 0 be

given. Since ∥., .∥+0 is a 2-norm in usual sense, ∥cXjk, Z∥+0 = |c|∥Xjk, Z∥+0 .

Since Xjk
IE2−−→ X0, we have

A(ε) = {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ ε} ∈ I2.
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Let A1(ε) = {(j, k) ∈ N×N : ∥cXjk − cX0, Z∥+0 ≥ ε}. We need to show that A1(ε) is contained

in A(ε1). Let (t, s) ∈ A1(ε), then ε ≤ ∥cXts − cX0∥+0 = |c|∥Xts −X0∥+0 . This implies that

∥Xts −X0∥+0 ≥ ε
|c| = ε1. Therefore (t, s) ∈ A(ε1). Then we have A1(ε) ⊂ A(ε1). By the

definition of the ideal, we get A1(ε) ∈ I2 which proves (4).

(5) Let ε > 0 and W ∈ E be given. From Xjk
IE2−−→ X0 it follows

A1(ε) = {(j, k) ∈ N× N : ∥Xjk −X0,W∥+0 ≥ ε} ∈ I2,

and from Zjk
IE2−−→ X0 it follows

A2(ε) = {(j, k) ∈ N× N : ∥Zjk −X0,W∥+0 ≥ ε} ∈ I2.

We shall prove

C := {(j, k) ∈ N× N : ∥Yjk −X0,W∥+0 ≥ ε} ⊂ A1(ε) ∪A2(ε) ∪ (N2 \B).

Let (p, q) ∈ C. If (p, q) ∈ N2 \B, then (p, q) ∈ A1(ε)∪A2(ε)∪ (N2 \B). Assume now (p, q) ∈ B.

Then ∥Ypq −X0,W∥+0 ≥ ε. Since Zpq ≽ Ypq we have ∥Zpq −X0,W∥+0 ≥ ε, hence (p, q) ∈ A2(ε).

Therefore, (p, q) ∈ A1(ε) ∪ A2(ε) ∪ (N2 \ B). Because the last set is in I2, we get C ∈ I2, i.e.

Yjk
IE2−−→ X0. �

Lemma 3.6. Let I2 be an admissible ideal with the property (AP). If {Pj}∞j=1 is a countable

collection of subsets of N×N such that Pj ∈ F(I2) for each j, then there exists a set P ⊂ N×N
such that P ∈ F(I) and the set P \ Pj is finite for all j.

Proof. Let A1 = N2 \P1, Am = (N2 \Pm) \ (A1 ∪A2 · · ·Am−1), m = 2, 3, · · · . Evidently, Ai ∈ I2
for each i, and Ai ∩ Aj = ∅ when i ̸= j. Then, by property (AP) of I2, we conclude that there

exists a countable family of sets {B1, B2, · · · } such that Aj∆Bj is a finite set for j ∈ N and

B =
∞∪
j=1

Bj ∈ I2. Put P = N2 \B. It is clear that P ∈ F(I2).

Now we prove that the set P \ Pi is finite for each i. Let j0 ∈ N be given. Since each Aj∆Bj

(j = 1, · · · , j0) is a finite set, there exists (n0,m0) ∈ N× N such that

j0∪
j=1

Bj ∩ {(n,m) ∈ N2 : n > n0,m > m0} =

j0∪
j=1

Aj ∩ {(n,m) ∈ N2 : n > n0,m > m0}. (4)

If n > n0,m > m0 and (n,m) /∈ B, then (n,m) /∈
j0∪
j=1

Bj and, by (4), (n,m) /∈
j0∪
j=1

Aj . Since

Aj0 = (N2 \ Pj0) \
j0−1∪
j=1

Aj and (n,m) /∈ Aj0 , we have (n,m) /∈
j0−1∪
j=1

Aj , and thus (n,m) ∈ Pj0

for all n and m with n > n0, m > m0. Therefore, we get (n,m) ∈ P and (n,m) ∈ Pj0 for all

(n,m) ∈ N2 with n > n0, m > m0. This shows that the set P \ Pj0 is finite and the lemma is

proved. �

Theorem 3.7. Let I2 be an admissible ideal with the property (AP). Let (E, ∥., .∥) be a fuzzy

2-normed space and {Xjk} be a double sequence in E. Then {Xjk} is an IE
2 -convergent sequence

in E if and only if there is an E-convergent double sequence {Yjk} such that {(j, k) ∈ N × N :

Xjk ̸= Yjk} ∈ I2.



104 TWMS J. PURE APPL. MATH., V.8, N.1, 2017

Proof. Suppose Xjk
IE2−−→ X0. For each n ∈ N and a non-zero Z ∈ E, let

An = {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 <
1

n
}.

Then An ∈ F(I2) for each n ∈ N.
Since I2 is admissible ideal with the property (AP), by Lemma 3.6 there exists A ⊂ N × N

such that A ∈ F(I) and the set A \An is finite for each n. Observe that Xjk →(A) X0, i.e., for

each ε > 0, there exists an integer n0 = n0(ε) ∈ N such that j, k ≥ n0 and (j, k) ∈ A implies

∥Xjk −X0, Z∥+0 < ε.

Define a sequence {Yjk} in E as

Yjk =

{
Xjk, for (j, k) ∈ A;

X0, for (j, k) ∈ (N× N) \A.

The sequence {Yjk} is E-convergent to X0 with respect to the fuzzy norm on E. Thus we have

{(j, k) ∈ N× N : Xjk ̸= Yjk} ∈ I2.
Next suppose that {(j, k) ∈ N × N : Xjk ̸= Yjk} ∈ I2 and Yjk → X0. Let ε > 0 be given.

Then for each n and a non-zero Z ∈ E, we can write

{j, k ≤ n : ∥Xjk −X0, Z∥+0 ≥ ε} ⊆ {j, k ≤ n : Xjk ̸= Yjk} ∪ {j, k ≤ n : ∥Xjk −X0, Z∥+0 > ε}.
(5)

Since first set on the right side of (5) belongs to I2, and the second set contain in a fixed number

of integers and thus belongs to I2, we conclude that {(j, k) : j, k ≤ n, ∥Xjk −X0, Z∥+0 ≥ ε}
belongs to I2. This achieves the proof. �

Now we prove a decomposition theorem for IE
2 -convergent sequences.

Theorem 3.8. Let {Xjk} be a double sequence in a fuzzy 2-normed space (E, ∥., .∥) and I2 be an

admissible ideal. If there exist two sequences {Yjk} and {Zjk} in E such that Xjk = Yjk + Zjk;

Yjk E-converges to X0 and supp(Zjk) = {(j, k) ∈ N× N : Zjk ̸= θ} ∈ I2, then Xjk
IE2−−→ X0.

Proof. Let {Yjk} and {Zjk} be double sequences in E as in the statement of the theorem and

H = supp(Zjk). Let ε > 0 and W ∈ E be given. Since A1 = {(j, k) ∈ N2 : ∥Zjk − 0,W∥+0 ≥
ε/2} ⊂ supp(Zjk) = H, we have A1 ∈ I2. Further,

∥Xjk −X0,W∥+0 = ∥Yjk + Zjk − 0−X0,W∥+0 ≤ ∥Yjk −X0,W∥+0 + ∥Zjk − 0,W∥+0
implies

{(j, k) ∈ N2 : ∥Xjk −X0,W∥+0 < ε} ⊃ {(j, k) ∈ N2 : ∥Yjk −X0,W∥+0 < ε/2}

∩ {(j, k) ∈ N2 : ∥Zjk − 0∥+0 < ε/2}.

The sets on the right side are both in F(I2), so that the set on the left side ia also in F(I2).

Therefore, {(j, k) ∈ N2 : ∥Xjk −X0,W∥+0 ≥ ε} ∈ I2, i.e. Xjk
IE2−−→ X0. �

Definition 3.9. Let (E, ∥., .∥ be a fuzzy 2-normed space. We say that a double sequence {Xjk}
in E is I∗E2 -convergent to X0 ∈ E with respect to the 2-norm on E if there exists a subset

K = {(jm, km) : j1 < j2 < · · · ; k1 < k2 < · · · } ⊂ N× N

such that K ∈ F(I2) and E-limm→∞ ∥Xjmkm −X0, Z∥ = 0 for each non-zero Z ∈ E.

In this case we write Xjk
I∗E2−−→ X0.
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Theorem 3.10. Let (E, ∥., .∥ be a fuzzy 2-normed space and I2 be an admissible ideal. If

Xjk
I∗E2−−→ X0, then Xjk

IE2−−→ X0.

Proof. Suppose that Xjk
I∗E2−−→ X0. Then by definition, there exists

K = {(jm, km) ∈ N× N : j1 < j2 < · · · ; k1 < k2 < · · · } ∈ F(I2)

such that E-limm→∞ ∥Xjmkm −X0, Z∥ = 0. Let ε > 0 and non-zero Z ∈ E be given. Since

E-limm→∞ ∥Xjmkm −X0, Z∥ = 0, there exists n0 ∈ N such that ∥Xjmkm −X0, Z∥+0 < ε for

every m ≥ n0. Since

A = {(jm, km) ∈ K : ∥Xjmkm −X0, Z∥+0 ≥ ε}

is contained in

B = {j1, j2, · · · , jn0−1; k1, k2, · · · , kn0−1}

and the ideal I2 is admissible, we have A ∈ I2. Hence

{(j, k) ∈ N× N : ∥Xjmkm −X0, Z∥+0 ≥ ε} ⊆ K ∪B ∈ I2

for ε > 0 and nonzero Z ∈ E. Therefore, we conclude that

Xjk
IE2−−→ X0.

�

Theorem 3.11. Let I2 be an admissible ideal with the property (AP) and (E, ∥., .∥ be fuzzy

2-normed space and {Xjk} be a double sequence in E. Then Xjk
IE2−−→ X0 implies Xjk

I∗E2−−→ X0.

Proof. Let Xjk
IE2−−→ X0. Then by definition, for every ε > 0 and a non-zero Z ∈ E, there exists

an integer n = n(ε) such that the set

B(ε) = {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ ε} ∈ I2.

For m ∈ N, we define the set Pm as follows:

P1 = {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ 1}

and

Pm = {(j, k) ∈ N× N :
1

m
≤ ∥Xjk −X0, Z∥+0 <

1

m− 1
}, for m ≥ 2 in N.

It is clear that {P1, P2, · · · } is a countable family of mutually disjoint sets belonging to I2,
then by the property (AP) of I2, there is a countable family of sets {Q1, Q2, · · · } in I2 such

that Pj∆Qj is a finite set for each j ∈ N and Q =

∞∪
j=1

Qj ∈ I2. Since Q ∈ I2, so there a set

B = N \ Q. To prove the result it is sufficient to show that Xjk →(B) X0. Let ξ > 0 be given.

Choose an integer p such that ξ > 1
p+1 . Thus, we have

{(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ ξ} ⊆ {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ 1

p+ 1
}

=

p+1∪
m=1

Pm. (6)
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Since Pm ∩Qm is a finite set for each m = 1, · · · , p+ 1, there exists (j0, k0) ∈ N× N such that(
p+1∪
m=1

Qm

)
∩ {(j, k) ∈ N× N : j ≥ j0, k ≥ k0}

=

p+1∪
m=1

Pm ∩ {(j, k) ∈ N× N : j ≥ j0, k ≥ k0}.

If j ≥ j0 and k ≥ k0 and (j, k) ∈ Q. This implies that (j, k) /∈
p+1∪
m=1

Qm and so (j, k) /∈
p+1∪
m=1

Pm.

Thus for every j ≥ j0 and k ≥ k0 and (j, k) ∈ B, from (6), we get ∥Xjk −X0, Z∥+0 < ξ. This

shows Xjk →(B) X0. This completes the proof. �

3.1. I2-limit points and I2-cluster points. In this subsection we introduce and consider the

notions of I2-limit points and I2-cluster points of sequences in a fuzzy 2-normed space.

Definition 3.12. Let {Xjk} be a double sequence in a fuzzy 2-normed space (E, ∥., .∥) and I2
an ideal on N× N. Then:

(1) an element W ∈ E is said to be an I2-limit point of {Xjk} provided that there is a

set K = {(jm, km) : j1 < j2 < · · · ; k1 < k2 < · · · } ⊂ N × N such that K /∈ I2 and

limm ∥Xjmkm −W,Z∥+0 = 0 for each a non-zero Z ∈ E;

(2) an element Y ∈ E is said to be an I2-cluster point of Xjk if for each ε > 0 and a

non-zero Z ∈ E, the set {(j, k) ∈ N× N : ∥Xjk − Y,Z∥+0 < ε} /∈ I2.

We denote by LE
I2(Xjk) and CE

I2(Xjk) the set of all I2-limit points and I2-cluster points of a
sequence {Xjk} in (E, ∥., .∥).

Theorem 3.13. Let I2 be an admissible ideal on N × N. Then for any sequence {Xjk} in a

fuzzy 2-normed space (E, ∥., .∥), we have LE
I2(Xjk) ⊂ CE

I2(Xjk).

Proof. Assume that W ∈ LE
I2(Xjk). Then by definition there is a set K = {(jm, km) : j1 < j2 <

· · · ; k1 < k2 < · · · } ⊂ N× N such that K /∈ I2 and

lim
m

∥Xjmkm −W,Z∥+0 = 0 for each non-zero Z ∈ E. (7)

Let ε > 0 and non-zero Z ∈ E be given. According to (7), there exists an integer n0 = n0(ε) ∈ N
such that for each m ≥ n0, we get ∥Xjmkm −W,Z∥+0 < ε.

Thus, we have

K \ {(j1, k1), · · · , (jn0 , kk0)} ⊂ {(j, k) ∈ N× N : ∥Xjmkm −W,Z∥+0 < ε}.

This implies that {(j, k) ∈ N× N : ∥Xjmkm −W,Z∥+0 < ε} /∈ I2. Hence W ∈ CE
I2(Xjk). �

Theorem 3.14. Let {Xjk} be a double sequence in a fuzzy 2-normed space (E, ∥., .∥). If Xjk
IE2−−→

X0, then LE
I2(Xjk) = CE

I2(Xjk) = {X0}.

Proof. Assume that Xjk
IE2−−→ X0. Then for each ε > 0 and a non-zero Z ∈ E, the set

{(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ ε} ∈ I2,

that is

{(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 < ε} /∈ I2,
which implies that X0 ∈ CE

I (Xjk).
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We assume that there exists at least one Y0 ∈ CE
I2(Xjk) such that Y0 ̸= X0. Then there exists

ε > 0 such that

{(j, k) ∈ N× N : ∥Xjk − Y0, Z∥+0 < ε} ⊂ {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ ε}

holds for each non-zero Z ∈ E. But {(j, k) ∈ N × N : ∥Xjk −X0, Z∥+0 ≥ ε} ∈ I2 implies that

{(j, k) ∈ N × N : ∥Xjk − Y0, Z∥+0 < ε} ∈ I2, which contradicts that Y0 ∈ CE
I2(Xjk). Thus we

have CE
I2(Xjk) = {X0}.

On the other hand, from Xjk
IE2−−→ X0, by Theorem 3.7 and Definition 3.12, we have X0 ∈ LE

I2 .

By Theorem 3.13, we have LE
I2(Xjk) = CE

I2(Xjk) = {X0}. �

Theorem 3.15. Let I2 be an admissible ideal on N×N. Then the set CE
I2 is closed in (E, ∥., .∥),

for every double sequence {Xjk} in E.

Proof. Let W ∈ CE
I2(Xjk). Let ε > 0 and a non-zero Z ∈ E be given. Then there exists an

X0 ∈ CE
I2(Xjk) ∩ UW (ε, 0). Choose η > 0 such that UX0(η, 0) ⊂ UW (ε, 0). Obviously we have

{(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 < η} ⊂ {(j, k) ∈ N× N : ∥Xjk −W,Z∥+0 < ε}.

This implies that {(j, k) ∈ N × N : ∥Xjk −W,Z∥+0 < ε} /∈ I2. Thus W ∈ CE
I2({Xjk). Hence

CE
I2({Xjk) is closed in E. �

4. IE
2 - and I∗E2 -double Cauchy sequences in fuzzy 2-normed spaces

In this section we study the concepts of I2-Cauchy and I∗2 -Cauchy double sequences in

(E, ∥., .∥). Moreover, we will study the relations between them. The investigation of ideal

Cauchy sequences (and nets) was done in [10, 13, 34].

Definition 4.1. Let (E, ∥., .∥) be a fuzzy 2-normed space and I2 be an admissible ideal of N×N.
A double sequence {Xjk} of elements in E is said to be

(1) an IE
2 -Cauchy sequence in E if for every ε > 0 and a nonzero Z ∈ E, there exist

s = s(ε), t = t(ε) such that

{(j, k) ∈ N× N : ∥Xjk −Xst, Z∥+0 ≥ ε} ∈ I2.

(2) an I∗E2 -Cauchy sequence in E if for every ε > 0 and a nonzero Z ∈ E, there exists

K = {(jm, km) : j1 < j2 < · · · ; k1 < k2 < · · · } ⊂ N× N

such that K ∈ F(I2) and {Xjmkm} is an ordinary E-Cauchy sequence in E.

The next theorem gives a relation between IE
2 - and I∗E2 -double Cauchy sequences.

Theorem 4.2. Let (E, ∥., .∥) be a fuzzy 2-normed space and I2 be an admissible ideal of N×N.
If {Xjk} is an I∗E2 -double Cauchy sequence, then {Xjk} is an IE

2 -double Cauchy sequence.

Proof. Since {Xjk} be an I∗E2 -double Cauchy sequence, for any ε > 0 and any non-zero Z ∈ E,

there exist

K = {(jm, km) : j1 < j2 < · · · ; k1 < k2 < · · · } ∈ F(I2)
and a number n0 ∈ N such that

∥Xjmkm −Xjpkp, Z∥+
0
< ε

for every m, p ≥ n0. Now, fix p = jn0+1, r = kn0+1. Then for every ε > 0 and a non-zero Z ∈ E,

we have

∥Xjmkm −Xpr, Z∥+0 < ε
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for every m ≥ n0. Let H = N× N \K. It is obvious that H ∈ F(I2) and

A(ε) = {(j, k) ∈ N× N : ∥Xjmkm −Xpr, Z∥+0 ≥ ε}
⊂ H ∪ {j1 < j2 < · · · ; k1 < k2 < · · · } ∈ I2.

Therefore, for every ε > 0 and non-zero Z ∈ E, we can find (p, r) ∈ N×N such that A(ε) ∈ I2,
i.e., {Xjk} is an IE

2 -double Cauchy sequence. �

Theorem 4.3. Let (E, ∥., .∥) be a fuzzy 2-normed space and I2 be an admissible ideal of N×N.
If a sequence {Xjk} is IE

2 -convergent, then it is an IE
2 -double Cauchy sequence.

Proof. Suppose that Xjk
IE2−−→ X0. Then for each ε >) and a non-zero Z ∈ E, we have

A(ε) = {(j, k) ∈ N× N : ∥Xjk −X0, Z∥+0 ≥ ε} ∈ I2.

Since I2 is an admissible ideal, there exists an (j0, k0) ∈ N× N such that (j0, k0) /∈ A(ε). Let

A1(ε) = {(j, k) ∈ N× N : ∥Xjk −Xj0k0 , Z∥+0 ≥ 2ε}.

Since ∥., .∥+0 is a 2-norm in the usual sense, we get

∥Xjk −Xj0k0 , Z∥+0 ≤ ∥Xjk −X0, Z∥+0 + ∥Xj0k0 −X0, Z∥+0 .

Observe that if (j, k) ∈ A1(ε), then

∥Xjk −X0, Z∥+0 + ∥Xj0k0 −X0, Z∥+0 ≥ 2ε.

On the other hand, since (j0, k0) /∈ A(ε), we have

∥Xj0k0 −X0, Z∥+0 < ε.

So we can conclude that ∥Xjk −X0, Z∥+0 ≥ ε, hence (j, k) ∈ A(ε). This implies that A1(ε) ⊂
A(ε), for each ε > 0 and a non-zero Z ∈ E. This gives A1(ε) ∈ I2 which shows that {Xjk} is an

IE
2 -double Cauchy sequence. �

Theorem 4.4. Let (E, ∥., .∥) be a fuzzy 2-normed space, I2 an admissible ideal in N×N, {Xjk} a

double sequence in E, and Anm = {(j, k) ∈ N×N : ∥Xjk −Xnm, Z∥+0 ≥ ε}, where (n,m) ∈ N×N.
If {Xjk} is an IN2 -double Cauchy sequence, then for every ε > 0, there exists B ⊂ N × N with

B ∈ I2 such that ∥Xjk −Xlt, Z∥+0 < ε, for all (j, k), (l, t) /∈ B.

Proof. Let ε > 0 and a non-zero Z ∈ E be given. Set B = Anm( ε2), where (n,m) ∈ N×N. Since
{Xjk} be a double sequence in E, we have B ∈ I2 and for all (j, k), (l, t) /∈ B, we get

∥Xjk −Xnm, Z∥+0 <
ε

2
and ∥Xnm −Xlt, Z∥+0 <

ε

2
.

Then we have ∥Xjk −Xlt, Z∥+0 < ε, for all (j, k), (l, t) /∈ B, by the triangle inequality, because

∥., .∥ is a 2-norm in the usual norm. �

Now we will prove that I∗E2 -convergent implies IE
2 -Cauchy condition in a fuzzy 2-normed

space.

Theorem 4.5. Let (E, ∥., .∥) be a fuzzy 2-normed space and I2 be an admissible ideal of N×N.
If a double sequence {Xjk} is I∗E2 -convergent, then it is an IE

2 -double Cauchy sequence.
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Proof. By assumption there exists a set

K = {(jm, km) : j1 < j2 < · · · ; k1 < k2 < · · · } ⊂ N× N

such that K ∈ F(I2) and E − limm ∥Xjmkm −X0, Z∥+0 = 0 for each nonzero Z ∈ E, i.e., there

exists n0 ∈ N such that ∥Xjmkm −X0, Z∥+0 < ε for every ε > 0, each non-zero Z ∈ E and

m > n0. Since

∥Xjmkm −Xjpkp , Z∥+
0
≤ ∥Xjmkm −X0, Z∥+0 + ∥Xjpkp −X0, Z∥+

0

for every ε > 0, each non-zero Z ∈ E and m, p > n0, we have

∥Xjmkm −Xjpkp , Z∥+
0
≥ ε

i.e., {Xjk} is an I∗E2 -double Cauchy sequence in E. Then by Theorem 4.2, {Xjk} is an IE
2 -double

Cauchy sequence. �

Theorem 4.6. Let (E, ∥., .∥) be a fuzzy 2-normed space and I2 be an admissible ideal in N ×
N with property (AP). Then the concepts IE

2 -double Cauchy sequence and I∗E2 -double Cauchy

sequence coincide.

Proof. If {Xjk} is an I∗E2 -double Cauchy sequence, then it is an IE
2 -double Cauchy sequence by

Theorem 4.2 (even if I2 does not have the (AP) property).

So, we have to prove the converse. Let {Xjk} be an IE
2 -double Cauchy sequence. Then by

definition, there exists an j0 = j0(ε), k0 = k0(ε) such that

A(ε) = {(j, k) ∈ N× N : ∥Xjk −Xj0k0 , Z∥+0 ≥ ε} ∈ I2

for every ε > 0 and non-zero Z ∈ E.

Let Pi = {(j, k) ∈ N× N : ∥Xjk −Xsiti , Z∥+0 < 1
i }, i = 1, 2, · · · , where si = j0(

1
i ), ti = k0(

1
i ).

It is clear that Pi ∈ F(I2) for i = 1, 2, · · · . Since I2 has the property (AP), then by Lemma 3.6

there exists a set P ⊂ N × N such that P ∈ F(I2), and P \ Pi is finite for all i. Now we prove

that

lim
j,k,s,t→∞

(j,k),(s,t)∈P

∥Xjk −Xst, Z∥+0 = 0.

To prove this, let ε > 0 and m ∈ N such that m > 2
ε . If (j, k), (s, t) ∈ P then P \ Pm is

finite set, so there exists r = r(m) such that (j, k), (s, t) ∈ P for all j, k, s, t > r(m). Therefore,

∥Xjk −Xsmtm , Z∥+0 < 1
m and ∥Xst −Xsmtm , Z∥+0 < 1

m for all j, k, s, t > r(m). Hence it follows

that

∥Xjk −Xst, Z∥+0 < ∥Xjk −Xsmtm , Z∥+0 + ∥Xst −Xsmtm , Z∥+0
< ε for all j, k, s, t > r(m).

Thus, for any ε > 0 there exists r = r(ε) such that j, k, s, t > r(ε) and j, k, s, t ∈ P ∈ F(I2)

∥Xjk −Xst, Z∥+0 < ε

for every non-zero Z ∈ E. This shows that {Xjk} is an I∗E2 -double Cauchy sequence in E. �
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5. Conclusion

In recent years the study of fuzzy numbers and fuzzy normed spaces related to convergence

has attracted a big number of works and a wide variety of approaches was developed. In this

paper we have focused on convergence of double sequences in fuzzy 2-normed spaces with respect

to an ideal on N×N and proved several results. We think that it may be interesting to make a

similar investigation for convergence of double sequences in 2-fuzzy 2-normed spaces and related

structures, as well as in (non-Archimedean) fuzzy anti-2-normed spaces.
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[20] Gähler, S., (1963), 2-metrishe Räume und ihr topologishe Struktur, Math. Nachr., 26, pp.115–148.

[21] Hazarika, B., (2014), On ideal convergent sequences in fuzzy normed linear spaces, Afrika Matematika, 25(4),

pp.987–999.

[22] Hazarika, B., (2016), Lacunary ideal convergence of multiple sequences in probabilistic normed spaces, Appl.

Math. Comp., 279, 139–153.

[23] Hazarika, B., Kumar, V., (2014), Fuzzy real valued I-convergent double sequences in fuzzy normed spaces,

J. Intell. Fuzzy Syst., 26(5), 2323–2332.

[24] Kaleva, O., Seikkala, S., (1984), On fuzzy metric spaces, Fuzzy Sets Syst., 12, pp.215–229.
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